Least squares cubic splines without B-splines

نویسنده

  • S. K. Lucas
چکیده

There are thousands of articles published on variants of splines, including least squares cubic splines. One of the first least squares articles was de Boor and Rice [1], and a comprehensive explanatory textbook is Dierckx [2]. Unfortunately, every example in the literature and on the web of a least squares cubic spline makes use of B-splines. While B-splines have a certain elegance, they are sufficiently complex to be beyond the typical undergraduate level, and have the disadvantage of being more expensive to evaluate than traditional cubic splines. For example, Schumacker [4] points out that it is more efficient to convert a cubic B-spline to a traditional cubic spline and then evaluate if you require two or more function evaluations per interval. The only exception to using B-splines is Ferguson and Staley [3], where they find a least squares cubic fit to data that enforces continuity of function and first derivative, but not second derivative. Thus, their formulation does not lead to a cubic spline. My colleague, Basil Benjamin, had been using what is essentially the same cubic fit as [3] when fitting smooth curves to train line data. This motivated me to seek the alternative that also enforces continuity of the second derivative.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained Interpolation via Cubic Hermite Splines

Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation.  It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...

متن کامل

A FILTERED B-SPLINE MODEL OF SCANNED DIGITAL IMAGES

We present an approach for modeling and filtering digitally scanned images. The digital contour of an image is segmented to identify the linear segments, the nonlinear segments and critical corners. The nonlinear segments are modeled by B-splines. To remove the contour noise, we propose a weighted least q m s model to account for both the fitness of the splines as well as their approximate cur...

متن کامل

Restricted Cubic Spline Regression: A Brief Introduction

Sometimes, the relationship between an outcome (dependent) variable and the explanatory (independent) variable(s) is not linear. Restricted cubic splines are a way of testing the hypothesis that the relationship is not linear or summarizing a relationship that is too non-linear to be usefully summarized by a linear relationship. Restricted cubic splines are just a transformation of an independe...

متن کامل

G/SPLINES: A Hybrid of Friedman's Multivariate Adaptive Regression Splines (MARS) Algorithm with Holland's Genetic Algorithm

G/SPLINES ate a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least-squares computations, and allows significantly larger problems to be considered.

متن کامل

Non Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations

Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003